HEC-RAS Introduction

Shirley Clark Penn State – Harrisburg

Robert Pitt University of Alabama

April 26, 2004

Linear Routing: Floodrouting

- Two (2) types of floodrouting of a hydrograph
 - Linear Muskingum
 - Reservoir Storage-Indication / Modified Puls
- Hydrograph (Flow versus Time).
 - Floodrouting input of the inflow hydrograph into a "Wedge" (Linear) or a "Pond" (Reservoir). The outflow hydrograph will be "dampened" such that the outflow hydrograph's peak will be less and delayed.

Uniform Open Channel Flow

Manning's Eqn for velocity or flow

$$v = \frac{1}{n} R^{2/3} \sqrt{S}$$
 S.I. units
$$v = \frac{1.49}{n} R^{2/3} \sqrt{S}$$
 English units

where

n = Manning's roughness coefficient
 R = hydraulic radius = A/P
 S = channel slope
 Q = flow rate (cfs) = v A

1

Non-Uniform Open Channel Flow

With natural or man-made channels, the shape, size, and slope may vary along the stream length, x. In addition, velocity and flow rate may also vary with x.

H = z + y +
$$\left(\alpha v^2 / 2g\right)$$

thus,
 $\frac{dH}{dx} = \frac{dz}{dx} + \frac{dy}{dx} + \frac{\alpha}{2g} \left(\frac{dv^2}{dx}\right)$
Where
H = total energy head
z = elevation head,
 $\alpha v^2/2g$ = velocity head

Backwater Profiles - Compute Numerically

Routine Backwater Calculations

- 1. Select Y_1 (starting depth)
- 2. Calculate A_1 (cross sectional area)
- (wetted perimeter) 3. Calculate P_1
- 4. Calculate $R_1 = A_1/P_1$
- 5. Calculate $V_1 = Q_1/A_1$
- 6. Select Y_2 (ending depth)
- 7. Calculate A_2
- 8. Calculate P_2
- 9. Calculate $R_2 = A_2/P_2$
- 10. Calculate $V_2 = Q_2/A_2$

Backwater Calculations (cont'd)

- 1. Prepare a table of values
- 2. Calculate $V_m = (V_1 + V_2) / 2$
- 3. Calculate $R_m = (R_1 + R_2) / 2$

4. Calculate
$$S = \left(\frac{nV_m}{1.49R_m^{2/3}}\right)^2$$
Manning's
5. Calculate L = ΔX from first equation
$$L = \frac{\left(\frac{y_1 + v_1^2}{2g}\right) - \left(\frac{y_2 + v_2^2}{2g}\right)}{S - S_0}$$

- 6. $X = \sum \Delta X_i$ for each stream reach (SEE SPREADSHEET)

Example

- Calculate the water surface profiles for two discharges in the channel described in the following tables.
 - $Q_1 = 20000 \text{ cfs}$
 - $Q_2 = 30000 \text{ cfs}$
- Assume a Manning's n of 0.24 for the two overbanks and a Manning's n of 0.04 for the channel.
- Assume the overbank distances between stations are the same as the distances between the stations in the channel.

Example

Sect	ion 1	Section 2		Sect	ion 3
Down	L = 0 ft	Down L :	= 1500 ft	Down L	= 2100 ft
Х	Y	Х	Y	Х	Y
0	40.5	0	43.6	0	46.1
40	36.3	60	19.7	40	45.1
95	19.7	120	18.8	140	12.5
140	9.8	195	16.2	240	1.7
200	5.3	210	7.1	275	15.1
299	1.7	245	4.1	290	15.3
360	21.8	345	20.5	305	15.9
421	42.9	450	25.7	310	19.9
		480	44.4	400	48.1
421	42.9	450 480	25.7 44.4	310 400	19.9 48.1

Example					
Sect	ion 4	Sect	ion 5	Sect	ion 6
Down L	= 2000 ft	Down L	= 3150 ft	Down L	= 1855 ft
Х	Y	Х	Y	Х	Y
0	48.2	0	61.1	0	64.4
100	19.1	50	51.2	19	57.0
113	15.1	101	14.3	49	29.1
230	17.3	201	1.1	149	19.0
340	5.9	259	19.6	207	14.4
395	6.4	289	21.1	217	13.1
461	41.4	356	60.9	293	18.8
503	48.4			361	36.1
				413	47.0
				471	63.3

- Open HEC-RAS (River Analysis System) by double-clicking on the icon (after installing the program).
- The following screen should appear:

File Edit Run View Options Help	
	Hydrologic Engineering Center US Army Corps of Engineers
Project:	
Plan:	
Geometry:	
Steady Flow:	
Unsteady Flow:	
Project Description :	US Customary Units

Running a Steady-State Flow Analysis on the Example

 Select File|New Project

HEC-RA	5 - River	Analysis	s System
File Edit R	un View	Options	Help
New Proje	ct		
Open Proje	ect		
Save Proje	ct		
Save Proje	ct As		
Rename Pr	oject Title		
Delete Pro	ject		
Project Su	mmary		
Import HE	C-2 Data		
Import HE	C-RAS Data	a	
Generate I	Report		
Export GIS	Data		
Export to H	HEC-DSS		
Restore Ba	ackup Data		
Exit			
C: HEC Da	ta RAS Ste	ady Flow	Examples\EX1.prj

Running a Steady-State Flow Analysis on the Example

• This screen should appear. Fill in the needed data. Then click "OK."

• The introductory screen should appear with the project name filled in.

HEC-RAS	- River Analysis System		
File Edit Ru	n View Options Help		
FRX		ELE Cos	Hydrologic Engineering Center US Army Corps of Engineers
Project:	class example	C:\HEC Data\RAS\classex.prj	
Plan:			
Geometry:			
Steady Flow:			
Unsteady Flow:			
Project Description :			US Customary Units

Running a Steady-State Flow Analysis on the Example

• Need to add geometric data (cross-section data). Click on Geometric Data button (tree).

Geometric Data - Edit/Enter geometric data		
File Edit Run View Options Help		
	ĔĿĿĔŒŒoss	Hydrologic Engineering Center US Army Corps of Engineers
ProEdit/Enter geometric data	C:\HEC Data\RAS\classex.prj	
Plan:		
Geometry:		
Steady Flow:		
Unsteady Flow:		
Project Description :		US Customary Units

Running a Steady-State Flow Analysis on the Example

 Need to add geometric data (crosssection data). Click on Geometric Data button (tree).

Running a Steady-State Flow Analysis on the Example

 Add River Reach by leftclicking on the River Reach button.

 In the tablet area, left-click where you want the reach to start and use the pencil to draw the reach. Double left-click when Reach is completed.

Running a Steady-State Flow Analysis on the Example

 Once the reach is drawn (ended by left double-click), a box will appear asking you to name the river and the reach.

Running a Steady-State Flow Analysis on the Example

- The result will look like the screen to the right.
- Next will need to describe cross-sections in the reach. (or can add additional reaches that drain to same outlet).

Running a Steady-State Flow Analysis on the Example

 Left-click on the crosssection button on the left.

• The following table should appear.

Cross Section I	Data - class exam	ple				
Ext Lot Options River River 1 Reach Reach 1	Plot Help	Apply Data		Plot Options	Keep Prev XS Plots Dear Prev	
Reach: Preach 1 Description Del Row Cross Section 20 Station 1 Station 1 Station 5 6	Files	Downstream Re LOB Charr Mannergis n V LOB Charr Main Charnel B Left Bark	ach Lengths ach Lengths alues (2) alues (No Data for Plot	
7 8 9 10 Edit Station Elevation (Data (tt)	Cont/Exp Co	efficients [7] Expansion			

Running a Steady-State Flow Analysis on the Example

• Under Options, select Add New Cross-Section.

Running a Steady-State Flow Analysis on the Example

• When the box appears, enter the station number in the reach.

Running a Steady-State Flow Analysis on the Example

• Enter the data as required in each of the boxes and then click "Apply Data".

• After clicking on "Apply Data", the plot should appear.

Running a Steady-State Flow Analysis on the Example

• When all cross-sections are entered and the data applied, select "Exit Cross-Section Editor".

Running a Steady-State Flow Analysis on the Example

• This will return the active screen to the Geometric Data screen. Need to save the geometric data.

Running a Steady-State Flow Analysis on the Example

- This will return the introductory (project organization) screen.
- Want to enter the conditions necessary to perform the steady-state flow example. Click on steady-state flow button.

🐯 Steady Fl	🕅 Steady Flow Data - Edit/Enter steady flow data						
File Edit Rur	n View Options Help						
FBX	<u>Ճ⅏ഺൔฅ¬⊮୭∟≋</u>	: 🗠 🖳 🖩 🖬 🖙 oss	Hydrologic Engineering Center US Army Corps of Engineers				
Project: Edit/En	ter steady flow data	C:\HEC Data\RAS\classex.prj					
Plan:							
Geometry:	class example	C:\HEC Data\RAS\classex.g01					
Steady Flow:							
Unsteady Flow:							
Project Description :			US Customary Units				

• The Steady-Flow Data screen will appear.

Running a Steady-State Flow Analysis on the Example

• Enter the data (enter number of profiles and the Q values).

Steady FI	ow Data			
File Options	Help			
Enter/Edit Nun	ber of Profiles (2000 max	1 2	Reach Boundary Conditions	Apply Data
	1	ocations of Flow Da	ata Changes	
Biver: Biver	1 -			
Reach: Reac	h1 💌	River Sta.: 6	▼ Add A Flow C	hange Location
	Flow Change Location		Profile Names and Flow R	ates
River	Reach	RS PF 1	PF 2	
1 River 1	Reach 1	6 2000	0 30000	
	1. (1. 0. ()			
Edit Steady flov	v data for the profiles (cfs)			

Running a Steady-State Flow Analysis on the Example

• Select the button "Reach Boundary Conditions."

Running a Steady-State Flow Analysis on the Example

 The following screen will appear. Click on desired boundary condition. Example will use "Normal Depth."

• "Normal Depth" requires entry of downstream slope at outlet. Use same slope as channel from Stations 2 to 1.

Running a Steady-State Flow Analysis on the Example

• Once boundary conditions have been entered, save the flow data and click OK.

HEC-RAS - River Analysis System File Edit Run View Options Help		
Save Flow Data As		
Title	File Name classex.f*	Directories C.\HEC Data\RAS C.\ HEC Data FAS Data Unsteady Flow Examples Unsteady Flow Examples
OK Cancel Help Select drive and path and enter new Title.	Create Directory	C: [HPNOTEBOOK]

Running a Steady-State Flow Analysis on the Example

• After saving, return to the introductory screen. The names of the data files for the Project, Geometry and Steady Flow should be showing.

HEC-RAS	HEC-RAS - River Analysis System						
File Edit Rur	n View Options Help						
FBX	☲ш╘๕삔◡ᆂ삗∠ӟ	: 🗠 🕑 🖩 🔳 💕 DSS	Hydrologic Engineering Center US Army Corps of Engineers				
Project:	class example	C:\HEC Data\RAS\classex.prj					
Plan:							
Geometry:	class example	C:\HEC Data\RAS\classex.g01					
Steady Flow:	class example	C:\HEC Data\RAS\classex.f01					
Unsteady Flow:							
Project Description :			US Customary Units				

Running a Steady-State Flow Analysis on the Example

• After saving, return to the introductory screen. The names of the data files for the Project, Geometry and Steady Flow should be showing.

K HEC-RAS	- River Analysis System		
File Edit Rur	n View Options Help		
F	☲ш╘๕삔◡ᆂ삗└ӟ	≝ ⊠ ∭ ∭ 1 055	Hydrologic Engineering Center US Army Corps of Engineers
Project:	class example	C:\HEC Data\RAS\classex.prj	
Plan:			
Geometry:	class example	C:\HEC Data\RAS\classex.g01	
Steady Flow:	class example	C:\HEC Data\RAS\classex.f01	
Unsteady Flow:			
Project Description :			US Customary Units
-			

• Click on the Perform a Steady Flow Simulation button.

Steady El	Steady Flow Analysis - Perform a steady flow simulation							
File Edit Rur	File Edit Run View Options Help							
		Ĩ <u>⊾ℤ∎</u> ∎⁰oss	Hydrologic Engineering Center US Army Corps of Engineers					
Project:	Perform a steady flow simulation	C:\HEC Data\RAS\classex.prj						
Plan:								
Geometry:	class example	C:\HEC Data\RAS\classex.g01						
Steady Flow:	class example	C:\HEC Data\RAS\classex.f01						
Unsteady Flow:								
Project Description :	<u> </u>		US Customary Units					

Running a Steady-State Flow Analysis on the Example

• Select New Plan.

File Options Help	615	
New Plan Open Plan Save Plan Save Plan As Rename Plan Title Delete Plan Exit	Short ID class example class example escription :	• •
Enter to compute water surf	COMPUTE ace profiles)

Running a Steady-State Flow Analysis on the Example

• Fill in the Plan Name and Short ID.

👌 Steady Flow Analysis						
File Options Help						
Plan :	Short ID					
Geometry File :	class example		-			
Steady Flow File :	class example		•			
Flow Regime Plan De	scription :					
COMPUTE						
Enter to compute water surface	e profiles					

Running a Steady-State Flow Analysis on the Example

• The screen now should look like this. Click on COMPUTE to run the simulation.

• This screen will appear when the simulation is complete.

8	🕅 HEC-RAS Finished Computations						
	Steady Flo	w Simulation					
	River:	River 1	RS:	6			
	Reach:	Reach 1	Node Type:	Cross Section			
	Profile:	PF 2					
	Simulation:	2/2					
	Computatio	on Messages					
	Steady Flow Simulation Version 3.1.1 May 2003						
	Finished 5	leady flow simulation					
	Total Computation Time = 0 min 1.29 sec						
	Close						

Running a Steady-State Flow Analysis on the Example

• Select "View Cross-Sections."

🕅 Cross Sec	tions - View cross sections							
File Edit Ru	File Edit Run View Options Help							
FRY	<u>50150071010</u>	🌮 🗠 🔛 🔳 🛅 🖬 oss	Hydrologic Engineering Center US Army Corps of Engineers					
Project:	class example View cross sections	C:\HEC Data\RAS\classex.prj						
Plan:	class example	C:\HEC Data\RAS\classex.p01						
Geometry:	class example	C:\HEC Data\RAS\classex.g01						
Steady Flow:	class example	C:\HEC Data\RAS\classex.f01						
Unsteady Flow:								
Project Description :			US Customary Units					

Running a Steady-State Flow Analysis on the Example

Running a Steady-State Flow Analysis on the Example

• Select "View Profiles."

🕅 Water Su	rface Profiles - View profiles		
File Edit Ru	n View Options Help		
FBX	☲龜ᆂ๕삔❤ᆂ뻳ヒ箋	₽⊾≝∎∎∎∎ss	Hydrologic Engineering Center US Army Corps of Engineers
Project	class example View profiles	C:\HEC Data\RAS\classex.prj	
Plan:	class example	C:\HEC Data\RAS\classex.p01	
Geometry:	class example	C:\HEC Data\RAS\classex.g01	
Steady Flow:	class example	C:\HEC Data\RAS\classex.f01	
Unsteady Flow:			
Project Description :			US Customary Units
Freedomen	Le d'altre a		

Running a Steady-State Flow Analysis on the Example

• Select "View 3D Multiple Cross-Section Plot."

🐯 XYZ Pers	🕅 XYZ Perspective Plots - View 3D multiple cross section plot						
File Edit Run View Options Help							
Project:	class example View 3D multiple	cross section plot S\classex.prj					
Plan:	class example	C:\HEC Data\RAS\classex.p01					
Geometry:	class example	C:\HEC Data\RAS\classex.g01					
Steady Flow:	class example	C:\HEC Data\RAS\classex.f01					
Unsteady Flow:							
Project Description :			US Customary Units				

Running a Steady-State Flow Analysis on the Example

Running a Steady-State Flow Analysis on the Example

 Select "Profile Table Output" button.

• Use Options to show both profiles.

				HECRA	i Plan cla	tex Rive	River1 R	leach: Reac	h1			
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(11)	(枚)	(ft)	(8)	(R/R)	(it/s)	(sq #)	(ft)	
Reach 1	6	PF 1	20000.00	13.10	30.58		31.84	0.001748	9.21	3011.34	291.88	0.43
Reach 1	6	PF 2	30000.00	13.10	34.97		36.55	0.001562	10.39	4342.84	313.89	0.42
Reach 1	5	PF 1	20000.00	1.10	29.61		30.14	0.000455	5.85	3809.40	223.49	0.23
Reach 1	5	PF 2	30000.00	1.10	33.93		34.73	0.000539	7.22	4803.47	236.74	0.25
Reach 1	4	PF 1	20000.00	5.90	28.16		28.63	0.000493	5.66	5162.54	367.16	0.23
Reach 1	4	PF 2	30000.00	5.90	32.31		32.98	0.000547	6.84	6730.79	389.23	0.25
Reach 1	3	PE 1	20000.00	1.70	26.44		27.32	0.000851	7.60	3305.95	233.64	0.31
Reach 1	3	PF 2	30000.00	1.70	30.09		31.44	0.001049	9.49	4199.24	256.46	0.35
Reach 1	2	PF 1	20000.00	4.10	21.35		23.64	0.004786	12.25	2028.35	306.39	0.66
Reach 1	2	PF 2	30000.00	4.10	24.26		27.23	0.004623	14.13	3013.75	372.31	0.68
Reach 1	1	PE 1	20000.00	1.70	18.52	12.39	19.35	0.001601	7.28	2748.00	249.70	0.39
Reach 1	1	PF 2	30000.00	1.70	21.77	14.61	22.86	0.001601	8.36	3597.50	271.80	0.40

Running a Steady-State Flow Analysis on the Example

• Use Options to show detailed cross-section output.

River Riv	er 1		Profile: PF 2			
Reach Rea	sch 1		RS: 6 -	I T Plan	classex	
		Plan: class	ex River1 Reach1 RS	6 Profile: PF 2		
E.G. Elev (1)	36.55	Element	Left 08	Channel	Right
Vel Head (r	t)	1.50	Wt.n-Val	0.240	0.040	0.
W.S. Elevi	(t)	34.97	Reach Len. (t)	1855.00	1855.00	1855
Crit W.S. (H	1		Flow Area (sq It)	1110.89	2717.87	514
E.G. Slope	(10/19)	0.001562	Area (sq R)	1110.89	2717.87	514
Q Total (ch	:)	30000.00	Flow (cfs)	1276.87	28226.77	496
Top Width	(h)	313.89	Top Width (It)	106.32	144.00	63
Vel Total (H	Vel Total (R/s) 6.1		Avg. Vel. (it/s)	1.15	10.39	
Max Chi Dp	Max Chi Dpth (R) 21.87		Hydr. Depth (It)	10.45	18.87	ŧ
Conv. Tota	Conv. Total (cfs) 758994.1		Conv. (cfs)	32304.4	714131.6	1255
Length Wik	£. (R)	1855.00	Welled Per. [II]	109.13	144.48	65
Min Ch El [0	13.10	Shear (b/sq ft)	0.99	1.83	(
Alpha		2.13	Steam Power (Ib/R s)	1,14	19.06	
Fretn Loss	(ft)	1.59	Cum Volume (acre-ft)	230.61	824.29	- 95
C&E Loss	(ft)	0.23	Cum SA (acres)	22.55	40.36	12
			Enors, Warnings and No	Ans:		
Waring 1	The velocit	y head has cha	inged by more than 0.5 It (0.	15 m). This may i	ndicate the ne	ed for
4	additional cross sections.					
Waring 1	he conve	yance ratio (ups	theam conveyance divided	by downstream co	onveyance) is	less that
		0.7 or g	reater than 1.4. This may in	dicate the need for	or additional ci	oss seci
Waring	he energy	loss was great	er than 1.0 R (0.3 m), betwee	en the current and	d previous cro	is secto
1	his new in	dicate the need	Hor additional cross section	8		

Connecting HMS and RAS

	Project Name - HHWaller				
				1.11	
	Description : Phan was	er Creek Model			
	Components				
	Basin Model	Precipitation Model	Control Specifications		
	Waller Ck. 1	50-year storm	36 hours		
	Component Description	HECPREPRO Version 4.0.	w	-3	
	Click component for description	n; double click to edit.			
R HEC-RAS					
Eile Edt S	Emulate Yerw Options Help	Indian I		17 . 17	
1 . D. C		Cost Si Units	Hydrologic Er Uli Army Cos	e of Engineers	
S B X	Malar Crash	h thman	as/wallerRAS/FlowGeometry	waller.prj	
Project.	fright cites		h \hmsras\wallerRAS\FlowGeometry\waller.p01		
Project. Plan	Plan 01	httms:	as managed as tow Facuratia		
Project. Plan Geometry	Plan 01 Finalized Walter Creek Geomet	ry h Viman	as wallerRAS/FlowGeometry	waller.g05	
Project Plan: Geometry Flow:	Plan 01 Finalized Waller Creek Geomet Waller Creek Existing Flow Cor	ry fi Vimer ndtions fi Vimer	as wallerRAS/FlowGeometry as wallerRAS/FlowGeometry as wallerRAS/FlowGeometry	waller.g05 waller.f10	

Discharge at a Particular Cross-Section

HEC-RA	S: Output
Waller Creek	INPUT Description: 32093 Station Elevation Data num 12 Station Elevation Data Num 12 Station Elevation Data Num 12 1044.9 066.60 1095.1 002.76 1166 679.06 1184 1204.4 680.1 1291.9 682.23 1321.9 680.88 1360 1400 680.16 1400 690.2 Manning's n Values num 7 Sta n Val Sta n Val Sta n Val 1044.9 0.4 1166 .05 1204.4 .00 1294 1360.2 .02 1389.3 .04 8ank Stat Left Channel Rightife Lengths: Left Channel Rightife 122 132
Legend WS PF#4 Ground Bank Sta Ineff	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

HEC-RAS: Data Translation

Station No.	Location	L Flood X	L Bank X	Channel	R Bank X	R Flood X	Tood Elevati
28514		238.0	36.6	3579.0	13.4	179.1	651.5
28490	55 1/2 Street o		36.6	3628.0	13.4		
28465		246.4	36.6		13.4	184.8	651.7
28428		137.7	23.0	3665.0	12.0	175.6	651.1
28308		95.7	23.0	3785.0	12.0	148.5	649.2
28118		216.9	32.9	3975.0	27.8	118.3	648.2
28092		236.3	30.9	4001.0	29.8	140.5	648.3
28066	55th Street on V		30.9	4052.0	29.8		
28041		227.9	30.9		29.8	133.1	648.2
28001		201.0	11.0	4092.0	25.0	113.0	647.6
27901		182.2	11.0	4192.0	25.0	108.0	646.5
27798		245.3	28.5	4295.0	21.5	134.4	646.9
27775		237.3	22.9	4318.0	27.1	138.6	646.9
27752	Nelray Street or		22.9	4364.0	27.1		
27729		253.3	22.9		27.1	149.1	647.1
27699		285.1	11.8	4394.0	12.3	155.5	646.9
27569		272.4	11.8	4524.0	12.3	146.0	645.4
27427		263.2	6.0	4666.0	23.5	240.9	644.9
27404		370.7	5.5	4689.0	24.0	354.4	645.1
27381	Franklin Street		5.5	4734.0	24.0		
27359		372.7	5.5		24.0	353.1	645.2
27337		29/16	17.5	4756.0	20.0	268.9	644.8

- Data translation from HEC-RAS text file to dbase table
- Bank and floodplain boundaries measured from stream centerline

Brays Bayou-Typical Urban System

Bridges cause unique problems in hydraulics

Piers, low chords, and top of road is considered

Expansion/contraction can cause hydraulic losses

Several cross sections are needed for a bridge

Critical in urban settings

- The Woodlands planners wanted to design the community to withstand a 100-year storm.
- In doing this, they would attempt to minimize any changes to the existing, undeveloped floodplain as development proceeded through time.

